Tech Updates & Reviews

Scientists Developed A New Way That Turn Sunlight Directly Into Fuel

You definitely know how plants make their food to get energy. Yes! it’s through photosynthesis, which is one of the basic and primary reaction for the production of energy in nature because this is the way we get oxygen as a product.

But have you ever wondered what if we can apply the same process with some man-made biotech materials that will produce oxygen, hydrogen so that we can get enough fuel for the consumption. Now this what we are talking about here.

A research based study was done at St John’s College, University of Cambridge, used semi-artificial photosynthesis to explore new ways to produce and store solar energy. They used natural sunlight to convert water into hydrogen and oxygen using a mixture of biological components and humanmade technologies.

The research could now be used to revolutionise the systems used for renewable energy production. A new paper, published in Nature Energy, outlines how academics at the Reisner Laboratory in Cambridge developed their platform to achieve unassisted solar-driven water-splitting.

Their method also managed to absorb more solar light than natural photosynthesis.

Katarzyna Sokól, first author and PhD student at St John’s College, said: “Natural photosynthesis is not efficient because it has evolved merely to survive so it makes the bare minimum amount of energy needed — around 1-2 per cent of what it could potentially convert and store.”

Artificial photosynthesis has been around for decades but it has not yet been successfully used to create renewable energy because it relies on the use of catalysts, which are often expensive and toxic. This means it can’t yet be used to scale up findings to an industrial level.

Let’s have a look What Artificial Photosynthesis Is In Some Depth-

Artificial photosynthesis is a chemical process that replicates the natural process of photosynthesis, a process that converts sunlight, water, and carbon dioxide into carbohydrates and oxygen; as an imitation of a natural process it is biomimetic. The term, artificial photosynthesis, is commonly used to refer to any scheme for capturing and storing the energy from sunlight in the chemical bonds of a fuel (a solar fuel). Photocatalytic water splitting converts water into hydrogen and oxygen, and is a major research topic of artificial photosynthesis. Light-driven carbon dioxide reduction is another process studied, that replicates natural carbon fixation.

Research of this topic includes the design and assembly of devices for the direct production of solar fuels, photoelectrochemistry and its application in fuel cells, and the engineering of enzymes and photoautotrophic microorganisms for microbial biofuel and biohydrogen production from sunlight.


Advantages of solar fuel production through artificial photosynthesis :

  • The solar energy can be immediately converted and stored. In photovoltaic cells, sunlight is converted into electricity and then converted again into chemical energy for storage, with some necessary loss of energy associated with the second conversion.
  • The byproducts of these reactions are environmentally friendly. Artificially photosynthesized fuel would be a carbon-neutral source of energy, which could be used for transportation or homes.

Disadvantages include:

  • Materials used for artificial photosynthesis often corrode in water, so they may be less stable than photovoltaics over long periods of time. Most hydrogen catalysts are very sensitive to oxygen, being inactivated or degraded in its presence; also, photodamage may occur over time.
  • The cost is not (yet) advantageous enough to compete with fossil fuels as a commercially viable source of energy.

A concern usually addressed in catalyst design is efficiency, in particular how much of the incident light can be used in a system in practice. This is comparable with photosynthetic efficiency, where light-to-chemical-energy conversion is measured. Photosynthetic organisms are able to collect about 50% of incident solar radiation, however the theoretical limit of photosynthetic efficiency is 4.6 and 6.0% for C3 and C4 plants respectively. In reality, the efficiency of photosynthesis is much lower and is usually below 1%, with some exceptions such as sugarcane in tropical climate. In contrast, the highest reported efficiency for artificial photosynthesis lab prototypes is 22.4%. However, plants are efficient in using CO2 at atmospheric concentrations, something that artificial catalysts still cannot perform.


Basically the research is part of the emerging field of semi-artificial photosynthesis which aims to overcome the limitations of fully artificial photosynthesis by using enzymes to create the desired reaction.

Sokól and the team of researchers not only improved on the amount of energy produced and stored, they managed to reactivate a process in the algae that has been dormant for millennia.

She explained: “Hydrogenase is an enzyme present in algae that is capable of reducing protons into hydrogen. During evolution this process has been deactivated because it wasn’t necessary for survival but we successfully managed to bypass the inactivity to achieve the reaction we wanted — splitting water into hydrogen and oxygen.”

Sokól hopes the findings will enable new innovative model systems for solar energy conversion to be developed.

She added: “It’s exciting that we can selectively choose the processes we want, and achieve the reaction we want which is inaccessible in nature. This could be a great platform for developing solar technologies. The approach could be used to couple other reactions together to see what can be done, learn from these reactions and then build synthetic, more robust pieces of solar energy technology.”

This model is the first to successfully use hydrogenase and photosystem II to create semi-artificial photosynthesis driven purely by solar power.

Dr Erwin Reisner, Head of the Reisner Laboratory, a Fellow of St John’s College, University of Cambridge, and one of the paper’s authors described the research as a ‘milestone’.

He explained: “”This work overcomes many difficult challenges associated with the integration of biological and organic components into inorganic materials for the assembly of semi-artificial devices and opens up a toolbox for developing future systems for solar energy conversion.”

Well it’s a matter of fact that these researches are in huge demand for the more energy production and we hope they will further be getting advanced through course of time.

SOURCE – Sciencedaily


Show More

Leave a Reply

Your email address will not be published. Required fields are marked *